
Analog FM repeater anti piracy
In this article you will learn how to use machine learning for fighting analog FM repeater
pirates. If you do not know what a repeater stations is, this is a ham radio station that re-
transmits broadcasts from other ham radio operators.

This article describes how to make the AI model to classify transmissions, where pirates are
unwanted and ham radio operators are legitimate users. The article does not describe how to
interface with the repeater. So you have to add something to the detection script that can
(temporarily) switch off the repeater when pirates are detected and then turn it back on after
a while. My goal was to keep the repeater as-is, meaning analog, so hams can continue to use
cheap radios to work it, but discourage pirates as much as possible in an automated fashion.

To be able to use machine learning you will need some computer that can receive the radio
signal from the repeater and that is capable of running Python. You will also need some way to
control the repeater. If your repeater can be controller via the command line or an API, you
should be able to hook this into the detection script. Otherwise you may need to fabricate
some computer controlled relay with an Arduino. For receiving the radio signal you can use an
RTL-SDR or WebSDR stream if your repeater has one. In the article you will find a script that
can be used to record audio, it will record the audio that is played back on the computer. This
is the most flexible way, as it allows to record whatever the web browser is playing if you use
a WebSDR or what gqrx is playing if you use RTL-SDR. You will need to do some tricks to get
start the playback of the WebSDR or gqrx. (ChatGPT is your friend)

To create the machine learning model an i5 laptop without graphics cards will do the trick.
Once the model is trained and you have installed the Python libraries no Internet connection
is needed for the AI portion.

This article is not an exact step-by-step, it will explain the basics of using Tensorflow (the
Python library to do AI work) but you will see a lot of hard-coded paths (/home/bar is my home
directory) so expect some trial and error and if you have trouble getting it to work, you can
contact me via email, find it on https://www.qrz.com/db/PC1K

Before executing a script on Linux you need to mark it as executable, example: chmod +x
myscript.sh. This needs to be done for .sh and .py files.

Step 1: Capturing training data
For training the machine learning model we need audio samples of transmissions made by
hams and pirates.

Easiest way of getting these samples is opening a web browser and start the web stream of
the repeater, https://stream.hobbyscoop.nl/pi1dft

The following script will be executed and creates a folder in RAM memory (tmpfs) here we are
recording 5 seconds chunks of the stream. After 5 seconds the script checks if the recording
was only silence or if there was an audio transmission. If so the wav file is moved into a folder
for storage on disk.

PC1K 1

https://www.qrz.com/db/PC1K
https://stream.hobbyscoop.nl/pi1dft

#!/bin/bash

#apt-get install sox

#https://stream.hobbyscoop.nl/pi1dft

Directory to save recorded audio files

OUTPUT_DIR="/home/bar/dft/chunks"

mkdir -p $OUTPUT_DIR

Directory to temporarily store files in tmpfs

TMPFS_DIR="/home/bar/dft/tmpfs"

mkdir -p $TMPFS_DIR

if mount | grep "on $TMPFS_DIR type tmpfs" > /dev/null; then

 echo "$TMPFS_DIR is already mounted with tmpfs."

else

 echo "$TMPFS_DIR is not mounted with tmpfs. Mounting now..."

 # Mount the directory with tmpfs

 sudo mount -t tmpfs -o size=100M,mode=0777 tmpfs $TMPFS_DIR

 if [$? -eq 0]; then

 echo "Mounted $TMPFS_DIR with tmpfs successfully."

 else

 echo "Failed to mount $TMPFS_DIR with tmpfs."

 exit 1

 fi

fi

Function to check if a file contains only silence

is_silence() {

 local file=$1

 local silence=$(sox "$file" -n stat 2>&1 | grep "Maximum amplitude" | awk '{print $3}')

 if (($(echo "$silence < 0.01" | bc -l))); then

 return 0 # Silence

 else

 return 1 # Not silence

 fi

}

2 PC1K

while true; do

 TIMESTAMP=$(date +%Y%m%d%H%M%S)

 TEMP_FILE="$TMPFS_DIR/recording_$TIMESTAMP.wav"

 # Record audio in chunks of 5 seconds

 parec -d $(pactl list | grep 'Monitor Source' | head -n 1 | awk '{print $3}') --rate=44100 --channels=2 --file

-format=wav > "$TEMP_FILE" &

 PAREC_PID=$!

 sleep 5

 kill $PAREC_PID

 # Check if the recorded file is silence

 if is_silence "$TEMP_FILE"; then

 echo "Detected silence in $TEMP_FILE. Removing..."

 rm "$TEMP_FILE"

 else

 FINAL_FILE="$OUTPUT_DIR/recording_$TIMESTAMP.wav"

 mv "$TEMP_FILE" "$FINAL_FILE"

 echo "Audio detected in $FINAL_FILE. File saved."

 fi

done

Configure OUTPUT_DIR and TMPFS_DIR before use.

Step 2: Manual sorting the training data
This is a tedious process, to ease the process another script is used. This script plays back
every wav recording chunk. At the end of each play back the script asks what you want to do
with the chunk. Options are:

• Move it into the ham folder

• Move it into the pirate folder

• Delete it

Bonus, since playback is done using mplayer, if you already hear a pirate at 1 second into the
playback you can hit enter key to skip the last 4 seconds of playback and go to the options
prompt immediately.

I remote mount the laptop running the audio capture and run this script every now and then
so I do not get to far behind. Remote mount is needed as playing back audio chunks on the
recording laptop, will cause them to be re-recorded resulting in dupes.

Script options, use keyboard key: h, p or d for (h)am, (p)irate, or (d)elete.

#!/bin/bash

sshfs bar@thinkpad-barry:/home/bar/ /media/local1

echo "nolirc=yes" > /home/bar/.mplayer/config
echo "nosub=yes" >> /home/bar/.mplayer/config
echo "noautosub=yes" >> /home/bar/.mplayer/config

Directories

PC1K 3

SOURCE_DIR="/media/local1/dft/chunks"
HAM_DIR="/media/local1/dft/ham"
PIRATE_DIR="/media/local1/dft/pirate"

Ensure the target directories exist
mkdir -p "$HAM_DIR"
mkdir -p "$PIRATE_DIR"

Function to prompt user and get a single character input without pressing Enter
get_char() {
 local char
 IFS= read -r -n1 char
 echo "$char"
}

Iterate over all wav files in the source directory
for filepath in "$SOURCE_DIR"/*.wav; do
 [-e "$filepath"] || continue # Skip if no wav files are found
 filename=$(basename "$filepath")

 # Play the file using mplayer
 mplayer "$filepath"

 # Prompt the user for input
 echo -n "Move '$filename' to (h)am, (p)irate, or (d)elete? "
 char=$(get_char)

 case $char in
 h)
 mv "$filepath" "$HAM_DIR"
 echo "Moved to ham folder: $filename"
 ;;
 p)
 mv "$filepath" "$PIRATE_DIR"
 echo "Moved to pirate folder: $filename"
 ;;
 d)
 rm "$filepath"
 echo "Deleted file: $filename"
 ;;
 *)
 echo "Invalid input. Skipping file."
 ;;
 esac
done

Before using configure SOURCE_DIR, HAM_DIR and PIRATE_DIR

Example output:

4 PC1K

bar@barry-desktop:~$ sshfs bar@thinkpad-barry:/home/bar/ /media/local1

bar@barry-desktop:~$ cd /media/local1/dft/

bar@barry-desktop:/media/local1/dft$./categorize.sh

MPlayer 1.4 (Debian), built with gcc-11 (C) 2000-2019 MPlayer Team

Playing /media/local1/dft/chunks/recording_20240625071421.wav.

libavformat version 58.76.100 (external)

Audio only file format detected.

==

Opening audio decoder: [pcm] Uncompressed PCM audio decoder

AUDIO: 44100 Hz, 2 ch, s16le, 1411.2 kbit/100.00% (ratio: 176400->176400)

Selected audio codec: [pcm] afm: pcm (Uncompressed PCM)

==

AO: [pulse] 44100Hz 2ch s16le (2 bytes per sample)

Video: no video

Starting playback...

A: 4.0 (04.0) of 4.0 (04.0) 1.1%

Exiting... (End of file)

Move 'recording_20240625071421.wav' to (h)am, (p)irate, or (d)elete? hMoved to ham folder: recording_20240625071421.wav

Step 3: Train machine learning (AI) model
This is done using a Python script and TensorFlow, following the guide published at
https://medium.com/@oluyaled/audio-classification-using-deep-learning-and-tensorflow-a-
step-by-step-guide-5327467ee9ab

Model training took about 45 minutes when used with 477 pirate wav files and 1446 ham wav
files on an i5 laptop with no GPU.

Move the wav recording that have been manually categorized into the folder
/home/bar/dft/train in this folder there should be a folder ham and a folder pirate. Then run the
script. If using different folder name update the data_dir variable.

#!/bin/python3

import os

import librosa

import numpy as np

import tensorflow as tf

from tensorflow.keras.layers import Input, Conv2D, MaxPooling2D, Flatten, Dense

from tensorflow.keras.models import Model

from tensorflow.keras.optimizers import Adam

from sklearn.model_selection import train_test_split

from tensorflow.keras.utils import to_categorical

from tensorflow.image import resize

from tensorflow.keras.models import load_model

Define your folder structure

data_dir = '/home/bar/dft/train'

classes = ['ham', 'pirate']

Load and preprocess audio data

def load_and_preprocess_data(data_dir, classes, target_shape=(128, 128)):

 print('Load and preprocess data')

 data = []

PC1K 5

https://medium.com/@oluyaled/audio-classification-using-deep-learning-and-tensorflow-a-step-by-step-guide-5327467ee9ab
https://medium.com/@oluyaled/audio-classification-using-deep-learning-and-tensorflow-a-step-by-step-guide-5327467ee9ab

 labels = []

 for i, class_name in enumerate(classes):

 class_dir = os.path.join(data_dir, class_name)

 for filename in os.listdir(class_dir):

 if filename.endswith('.wav'):

 file_path = os.path.join(class_dir, filename)

 audio_data, sample_rate = librosa.load(file_path, sr=None)

 # Perform preprocessing (e.g., convert to Mel spectrogram and resize)

 mel_spectrogram = librosa.feature.melspectrogram(y=audio_data, sr=sample_rate)

 mel_spectrogram = resize(np.expand_dims(mel_spectrogram, axis=-1), target_shape)

 data.append(mel_spectrogram)

 labels.append(i)

 return np.array(data), np.array(labels)

print('Split training and test data')

Split data into training and testing sets

data, labels = load_and_preprocess_data(data_dir, classes)

labels = to_categorical(labels, num_classes=len(classes)) # Convert labels to one-hot encoding

X_train, X_test, y_train, y_test = train_test_split(data, labels, test_size=0.2, random_state=42)

Create a neural network model

input_shape = X_train[0].shape

input_layer = Input(shape=input_shape)

x = Conv2D(32, (3, 3), activation='relu')(input_layer)

x = MaxPooling2D((2, 2))(x)

x = Conv2D(64, (3, 3), activation='relu')(x)

x = MaxPooling2D((2, 2))(x)

x = Flatten()(x)

x = Dense(64, activation='relu')(x)

output_layer = Dense(len(classes), activation='softmax')(x)

model = Model(input_layer, output_layer)

Compile the model

print('Compile model')

model.compile(optimizer=Adam(learning_rate=0.001), loss='categorical_crossentropy', metrics=['accuracy'])

Train the model

print('Train model')

model.fit(X_train, y_train, epochs=200, batch_size=32, validation_data=(X_test, y_test))

print('Test accuracy')

test_accuracy=model.evaluate(X_test,y_test,verbose=0)

print(test_accuracy[1])

Save the model

model.save('audio_classification_model.keras')

Step 4: Manual test the model on new data
For this I created a test.py script that can be executed as follows:

./test.py chunks/recording_20240627085410.wav

6 PC1K

This recording is of me calling Pappa Charly One Kilo Test, the script provides the following
prediction:

Class: ham, Probability: 1.0000
Class: pirate, Probability: 0.0000
The audio is classified as: ham
Accuracy: 1.0000

Contents of the test script:

#!/bin/python3
import sys

load_model_sample.py
from keras.models import load_model
from keras.preprocessing import image
import matplotlib.pyplot as plt
import numpy as np
import os
import tensorflow as tf
import librosa
from tensorflow.image import resize

Load the saved model
model = load_model('audio_classification_model.keras')

Define the target shape for input spectrograms
target_shape = (128, 128)

Define your class labels
classes = ['ham', 'pirate']

Function to preprocess and classify an audio file
def test_audio(file_path, model):
 # Load and preprocess the audio file
 audio_data, sample_rate = librosa.load(file_path, sr=None)
 mel_spectrogram = librosa.feature.melspectrogram(y=audio_data, sr=sample_rate)
 mel_spectrogram = resize(np.expand_dims(mel_spectrogram, axis=-1), target_shape)
 mel_spectrogram = tf.reshape(mel_spectrogram, (1,) + target_shape + (1,))

 # Make predictions
 predictions = model.predict(mel_spectrogram)

 # Get the class probabilities
 class_probabilities = predictions[0]

 # Get the predicted class index
 predicted_class_index = np.argmax(class_probabilities)

PC1K 7

 return class_probabilities, predicted_class_index

Test an audio file, passed as argument
test_audio_file = sys.argv[1]
class_probabilities, predicted_class_index = test_audio(test_audio_file, model)

Display results for all classes
for i, class_label in enumerate(classes):
 probability = class_probabilities[i]
 print(f'Class: {class_label}, Probability: {probability:.4f}')

Calculate and display the predicted class and accuracy
predicted_class = classes[predicted_class_index]
accuracy = class_probabilities[predicted_class_index]
print(f'The audio is classified as: {predicted_class}')
print(f'Accuracy: {accuracy:.4f}')

Step 5: Use the model for generate more training
data
We have validated the model manually, but to build confidence in it, the next step is to use
the model to sort new transmissions. This is a nice intermediate step between manually
sorting the data and using the AI to control the repeater when pirates are detected.

So in this step we will update the recording script to call the AI, and move the recordings into
the ham and pirate folders. We will then manually verify if the sorting was correct. And if
needed make corrections and re-train the model. And repeat the process untill the model is
accurate.

The predict.py script is an improved version of test.py that includes code to move the wav file
into the ham and pirate folders.

#!/bin/python3

import sys

load_model_sample.py

from keras.models import load_model

from keras.preprocessing import image

import matplotlib.pyplot as plt

import numpy as np

import os

import tensorflow as tf

import librosa

from tensorflow.image import resize

import shutil

def move_file(destination_subfolder):

 # Step 1: Get the file path from sys.argv[1]

 source_file_path = sys.argv[1]

8 PC1K

 # Step 2: Define the base destination directory

 base_destination_directory = os.path.expanduser("/home/bar/dft")

 # Step 3: Define the full destination directory based on the subfolder argument

 destination_directory = os.path.join(base_destination_directory, destination_subfolder)

 # Step 4: Ensure the destination directory exists

 os.makedirs(destination_directory, exist_ok=True)

 # Step 5: Construct the full path for the destination file

 destination_file_path = os.path.join(destination_directory, os.path.basename(source_file_path))

 # Step 6: Move the file

 shutil.move(source_file_path, destination_file_path)

 print(f"File moved to {destination_file_path}")

Load the saved model

model = load_model('audio_classification_model.keras')

Define the target shape for input spectrograms

target_shape = (128, 128)

Define your class labels

classes = ['ham', 'pirate']

Function to preprocess and classify an audio file

def test_audio(file_path, model):

 # Load and preprocess the audio file

 audio_data, sample_rate = librosa.load(file_path, sr=None)

 mel_spectrogram = librosa.feature.melspectrogram(y=audio_data, sr=sample_rate)

 mel_spectrogram = resize(np.expand_dims(mel_spectrogram, axis=-1), target_shape)

 mel_spectrogram = tf.reshape(mel_spectrogram, (1,) + target_shape + (1,))

 # Make predictions

 predictions = model.predict(mel_spectrogram)

 # Get the class probabilities

 class_probabilities = predictions[0]

 # Get the predicted class index

 predicted_class_index = np.argmax(class_probabilities)

 return class_probabilities, predicted_class_index

Test an audio file, passed as argument

test_audio_file = sys.argv[1]

class_probabilities, predicted_class_index = test_audio(test_audio_file, model)

Display results for all classes

for i, class_label in enumerate(classes):

 probability = class_probabilities[i]

 print(f'Class: {class_label}, Probability: {probability:.4f}')

Calculate and display the predicted class and accuracy

predicted_class = classes[predicted_class_index]

accuracy = class_probabilities[predicted_class_index]

PC1K 9

print(f'The audio is classified as: {predicted_class}')

print(f'Accuracy: {accuracy:.4f}')

move_file(predicted_class)

We add predict.py to the record.sh for the filtering as follows:

/home/bar/dft/predict.py "$FINAL_FILE" &

So the complete record.sh script now looks like this:

#!/bin/bash

#apt-get install sox

#https://stream.hobbyscoop.nl/pi1dft

Directory to save recorded audio files

OUTPUT_DIR="/home/bar/dft/chunks"

mkdir -p $OUTPUT_DIR

Directory to temporarily store files in tmpfs

TMPFS_DIR="/home/bar/dft/tmpfs"

mkdir -p $TMPFS_DIR

if mount | grep "on $TMPFS_DIR type tmpfs" > /dev/null; then

 echo "$TMPFS_DIR is already mounted with tmpfs."

else

 echo "$TMPFS_DIR is not mounted with tmpfs. Mounting now..."

 # Mount the directory with tmpfs

 sudo mount -t tmpfs -o size=100M,mode=0777 tmpfs $TMPFS_DIR

 if [$? -eq 0]; then

 echo "Mounted $TMPFS_DIR with tmpfs successfully."

 else

 echo "Failed to mount $TMPFS_DIR with tmpfs."

 exit 1

 fi

fi

Function to check if a file contains only silence

is_silence() {

 local file=$1

 local silence=$(sox "$file" -n stat 2>&1 | grep "Maximum amplitude" | awk '{print $3}')

 if (($(echo "$silence < 0.01" | bc -l))); then

 return 0 # Silence

 else

 return 1 # Not silence

 fi

}

while true; do

 TIMESTAMP=$(date +%Y%m%d%H%M%S)

 TEMP_FILE="$TMPFS_DIR/recording_$TIMESTAMP.wav"

 # Record audio in chunks of 5 seconds

 parec -d $(pactl list | grep 'Monitor Source' | head -n 1 | awk '{print $3}') --rate=44100 --channels=2 --file

-format=wav > "$TEMP_FILE" &

 PAREC_PID=$!

 sleep 5

 kill $PAREC_PID

10 PC1K

 # Check if the recorded file is silence

 if is_silence "$TEMP_FILE"; then

 echo "Detected silence in $TEMP_FILE. Removing..."

 rm "$TEMP_FILE"

 else

 FINAL_FILE="$OUTPUT_DIR/recording_$TIMESTAMP.wav"

 mv "$TEMP_FILE" "$FINAL_FILE"

 echo "Audio detected in $FINAL_FILE. File saved."

 /home/bar/dft/predict.py "$FINAL_FILE" &

 fi

done

Update model training for overfitting prevention
and early stopping
Based on the first couple of iterations of model training, the train.py script was improved in
the following ways:

• Dropout Layers: Added after each pooling layer and before the output layer to randomly
set a fraction of the input units to 0 during training.

• L2 Regularization: Added to the Dense layer to penalize large weights.

• Early Stopping: Monitors the validation loss and stops training when it stops improving,
helping to avoid overfitting.

In addition the validation and loss of the training are displayed in a graph, if running the script
remotely over SSH, you will need to use X forwarding to see the graphs. For example: ssh -XC
user@mymachine.pc1k.nl.

The early stopping reduces the time to train the model to about 6 minutes, instead of 45
minutes, while achieving an accuracy of 99%.

PC1K 11

mailto:user@mymachine.pc1k.nl

Accuracy, higher is better.

12 PC1K

Loss, lower is better.

Here is the updated train.py:

#!/bin/python3

import os

import librosa

import numpy as np

import tensorflow as tf

from tensorflow.keras.layers import Input, Conv2D, MaxPooling2D, Flatten, Dense, Dropout

from tensorflow.keras.models import Model

from tensorflow.keras.optimizers import Adam

from sklearn.model_selection import train_test_split

from tensorflow.keras.utils import to_categorical

from tensorflow.image import resize

from tensorflow.keras.models import load_model

from tensorflow.keras.regularizers import l2

from tensorflow.keras.callbacks import EarlyStopping

import matplotlib.pyplot as plt

Define your folder structure

data_dir = '/home/bar/dft/train'

classes = ['ham', 'pirate']

Load and preprocess audio data

def load_and_preprocess_data(data_dir, classes, target_shape=(128, 128)):

 print('Load and preprocess data')

 data = []

 labels = []

 for i, class_name in enumerate(classes):

 class_dir = os.path.join(data_dir, class_name)

PC1K 13

 for filename in os.listdir(class_dir):

 if filename.endswith('.wav'):

 file_path = os.path.join(class_dir, filename)

 audio_data, sample_rate = librosa.load(file_path, sr=None)

 # Perform preprocessing (e.g., convert to Mel spectrogram and resize)

 mel_spectrogram = librosa.feature.melspectrogram(y=audio_data, sr=sample_rate)

 mel_spectrogram = resize(np.expand_dims(mel_spectrogram, axis=-1), target_shape)

 data.append(mel_spectrogram)

 labels.append(i)

 return np.array(data), np.array(labels)

print('Split training and test data')

Split data into training and testing sets

data, labels = load_and_preprocess_data(data_dir, classes)

labels = to_categorical(labels, num_classes=len(classes)) # Convert labels to one-hot encoding

X_train, X_test, y_train, y_test = train_test_split(data, labels, test_size=0.2, random_state=42)

Create a neural network model

input_shape = X_train[0].shape

input_layer = Input(shape=input_shape)

x = Conv2D(32, (3, 3), activation='relu')(input_layer)

x = MaxPooling2D((2, 2))(x)

x = Dropout(0.25)(x)

x = Conv2D(64, (3, 3), activation='relu')(x)

x = MaxPooling2D((2, 2))(x)

x = Dropout(0.25)(x)

x = Flatten()(x)

x = Dense(64, activation='relu')(x)

x = Dropout(0.5)(x)

output_layer = Dense(len(classes), activation='softmax', kernel_regularizer=l2(0.01))(x)

model = Model(input_layer, output_layer)

Compile the model

print('Compile model')

model.compile(optimizer=Adam(learning_rate=0.001), loss='categorical_crossentropy', metrics=['accuracy'])

Early Stopping

early_stopping = EarlyStopping(monitor='val_loss', patience=10, restore_best_weights=True)

Train the model

print('Train model')

history = model.fit(X_train, y_train, epochs=100, batch_size=32, validation_data=(X_test, y_test),

callbacks=[early_stopping])

print('Test accuracy')

test_accuracy=model.evaluate(X_test,y_test,verbose=0)

print(test_accuracy[1])

Save the model

model.save('audio_classification_model.keras')

Plot the chart for accuracy and loss on both training and validation

acc = history.history['accuracy']

val_acc = history.history['val_accuracy']

loss = history.history['loss']

val_loss = history.history['val_loss']

epochs = range(len(acc))

plt.plot(epochs, acc, 'r', label='Training accuracy')

plt.plot(epochs, val_acc, 'b', label='Validation accuracy')

14 PC1K

plt.title('Training and validation accuracy')

plt.legend()

plt.figure()

plt.plot(epochs, loss, 'r', label='Training Loss')

plt.plot(epochs, val_loss, 'b', label='Validation Loss')

plt.title('Training and validation loss')

plt.legend()

plt.show()

Step 6 Using the model

Setting up Python
To make sure the model works reliable, it is advised to use Python in a virtual environment.
This will also make it survive OS upgrades. I download a Python tgz from
https://www.python.org/ftp/python/ and extract it into /opt/Python-X.XX.XX folder. Then I create
a virtual environment as follows:

mkdir /opt/tensorflow
virtualenv --python="/opt/Python-3.10.11/python" "/opt/tensorflow"
cd /opt/tensorflow
source bin/activate
pip install tensorflow scikit-learn pandas matplotlib seaborn librosa

Then to run the prediction script, I create a action.sh wrapper with the following content:

#!/bin/bash

cd /opt/tensorflow/
source bin/activate
python /opt/tensorflow/action.py $1

I can use the action.sh wrapper to automatically run whenever we receive a new wav
recording. The prediction takes around 3 seconds.

Using the model
Now that we have validated the model as much as possible it is time to implement it. For this
we make a copy of the test.py and update it to perform an action if a pirate is detected with
>99.7% accuracy. The code used to make this distinction is:

accuracy_string = f'{accuracy:.4f}'

if predicted_class == 'pirate':

 if '0.99' in accuracy_string or '0.98' in accuracy_string or '0.97' in accuracy_string or '1.' in accuracy_string:

 # Your code to execute when accuracy is greater than 99.6

PC1K 15

https://www.python.org/ftp/python/

 print("This is a pirate with at least 99.7% accuracy")

Arguably there should be a way in Python to work with the percentage directly and not do it
via string comparison, but I have not figured that one out yet.

The complete action.py is defined as follows:

#!/bin/python3

import sys

load_model_sample.py

from keras.models import load_model

from keras.preprocessing import image

import matplotlib.pyplot as plt

import numpy as np

import os

import tensorflow as tf

import librosa

from tensorflow.image import resize

Load the saved model

model = load_model('audio_classification_model.keras')

Define the target shape for input spectrograms

target_shape = (128, 128)

Define your class labels

classes = ['ham', 'pirate']

Function to preprocess and classify an audio file

def test_audio(file_path, model):

 # Load and preprocess the audio file

 audio_data, sample_rate = librosa.load(file_path, sr=None)

 mel_spectrogram = librosa.feature.melspectrogram(y=audio_data, sr=sample_rate)

 mel_spectrogram = resize(np.expand_dims(mel_spectrogram, axis=-1), target_shape)

 mel_spectrogram = tf.reshape(mel_spectrogram, (1,) + target_shape + (1,))

 # Make predictions

 predictions = model.predict(mel_spectrogram)

 # Get the class probabilities

 class_probabilities = predictions[0]

 # Get the predicted class index

 predicted_class_index = np.argmax(class_probabilities)

 return class_probabilities, predicted_class_index

Test an audio file, passed as argument

test_audio_file = sys.argv[1]

class_probabilities, predicted_class_index = test_audio(test_audio_file, model)

Display results for all classes

for i, class_label in enumerate(classes):

 probability = class_probabilities[i]

 print(f'Class: {class_label}, Probability: {probability:.4f}')

Calculate and display the predicted class and accuracy

predicted_class = classes[predicted_class_index]

accuracy = class_probabilities[predicted_class_index]

print(f'The audio is classified as: {predicted_class}')

print(f'Accuracy: {accuracy:.4f}')

16 PC1K

accuracy_string = f'{accuracy:.4f}'

if predicted_class == 'pirate':

 if '0.99' in accuracy_string or '0.98' in accuracy_string or '0.97' in accuracy_string or '1.' in accuracy_string:

 # Your code to execute when accuracy is greater than 99.6

 print("This is a pirate with at least 99.7% accuracy")

Bonus: Mel Spectrogram
In the blog post https://medium.com/@oluyaled/audio-classification-using-deep-learning-and-
tensorflow-a-step-by-step-guide-5327467ee9ab we can read the following:

Instead of using raw audio data, we convert it into a Mel spectrogram. A Mel spectrogram is a
visual representation of audio data that’s easier for a neural network to process. We create
these spectrograms using librosa.

Let’s see what a Mel Spectrogram looks like, so we get an idea of what the machine model is
learning with. For this we change the test.py code to output the spectrogram on the screen.

def test_audio(file_path, model):

 # Load and preprocess the audio file

 audio_data, sample_rate = librosa.load(file_path, sr=None)

 mel_spectrogram = librosa.feature.melspectrogram(y=audio_data, sr=sample_rate)

 Bonus code to show spectrogram

 # Convert to dB (log scale)

 S_dB = librosa.power_to_db(mel_spectrogram, ref=np.max)

 # Plot the mel spectrogram using matplotlib

 plt.figure(figsize=(10, 4))

 librosa.display.specshow(S_dB, sr=sample_rate, x_axis='time', y_axis='mel', cmap='viridis')

 plt.colorbar(format='%+2.0f dB')

 plt.title('Mel Spectrogram')

 plt.tight_layout()

 plt.show()

PC1K 17

https://medium.com/@oluyaled/audio-classification-using-deep-learning-and-tensorflow-a-step-by-step-guide-5327467ee9ab
https://medium.com/@oluyaled/audio-classification-using-deep-learning-and-tensorflow-a-step-by-step-guide-5327467ee9ab

Here we listened to a pirate playing some music, as you can see the music only lasted for 3.5
seconds followed by silence.

Links
It is not on Github, cause I do no like MS, here are some links:

• https://pc1k.nl/repeater-ai/Analog%20FM%20repeater%20anti%20piracy.pdf

• https://pc1k.nl/repeater-ai/action.py

• https://pc1k.nl/repeater-ai/analyze.sh

• https://pc1k.nl/repeater-ai/audio_classification_model_v7.keras

• https://pc1k.nl/repeater-ai/categorize.sh

• https://pc1k.nl/repeater-ai/predict.py

• https://pc1k.nl/repeater-ai/record.sh

• https://pc1k.nl/repeater-ai/test.py

• https://pc1k.nl/repeater-ai/train.py

• https://pc1k.nl/repeater-ai/recordings/

18 PC1K

https://pc1k.nl/repeater-ai/Analog%20FM%20repeater%20anti%20piracy.pdf
https://pc1k.nl/repeater-ai/action.py
https://pc1k.nl/repeater-ai/analyze.sh
https://pc1k.nl/repeater-ai/audio_classification_model_v7.keras
https://pc1k.nl/repeater-ai/categorize.sh
https://pc1k.nl/repeater-ai/predict.py
https://pc1k.nl/repeater-ai/record.sh
https://pc1k.nl/repeater-ai/test.py
https://pc1k.nl/repeater-ai/train.py
https://pc1k.nl/repeater-ai/recordings/

	Analog FM repeater anti piracy
	Step 1: Capturing training data
	Step 2: Manual sorting the training data
	Step 3: Train machine learning (AI) model
	Step 4: Manual test the model on new data
	Step 5: Use the model for generate more training data
	Update model training for overfitting prevention and early stopping
	Step 6 Using the model
	Setting up Python
	Using the model

	Bonus: Mel Spectrogram
	Links

